Functional groups include: hydroxyl, methyl, carbonyl, carboxyl, amino, phosphate, and sulfhydryl. Does this happen or is there a reason why it can't? Functional groups include: hydroxyl, methyl, carbonyl, carboxyl, amino, phosphate, and sulfhydryl. Are aldehydes and ketones (carbonyls) significantly soluble in water like alcohols and carboxylic acids? Most of the oxygen atoms in monosaccharides are found in hydroxyl (, If the carbonyl C is internal to the chain, so that there are other carbons on both sides of it, it forms a. Sugars are also named according to their number of carbons: some of the most common types are trioses (three carbons), pentoses (five carbons), and hexoses (six carbons). The carbonyl group bonds with a carbon atom to form a ring structure that is often found in polysaccharides that usually form hydrogen bonds with the hydroxyl groups. Disaccharieds 3. Group of atoms that give specific characteristics to an element. Functional groups are usually classified as hydrophobic or hydrophilic depending on their charge or polarity characteristics. Below is the structure of a disaccharide carbohydrate consisting of glucose and fructose. Key functional groups are _____. The short molecules are soluble in polar substances like water because they are relatively polar. Monosaccharides ("mono-" = one; "sacchar-" = sweet) are simple sugars; the most common is glucose. Structure of aldehyde: carbonyl bonded to a H on one side and to an R group (carbon-containing group) on the other. If you're seeing this message, it means we're having trouble loading external resources on our website. (a) Identify the functional groups in aspartame, the artificial sweetener in Equal. Direct link to David Son's post how alkanes are less reac, Posted 7 years ago. Generally, carbohydrates are classified into three major groups. Functional groups include: hydroxyl, methyl, carbonyl, carboxyl, amino, phosphate, and sulfhydryl. Cellulases can break down cellulose into glucose monomers that can be used as an energy source by the animal. Direct link to V1dotra1's post How can you tell if a fun, Posted 4 years ago. Functional groups in biological molecules play an important role in the formation of molecules like DNA, proteins, carbohydrates, and lipids. These geometries have a significant impact on the shape a particular molecule can assume. What is N-(2,2,2-Trichloroethyl)carbonyl] Bisnor-(cis)-tilidine's functional group? All of those H-bonds also make them quite "sticky". Introduction: Christian Orthodox fasting is a pattern high in complex carbohydrates and low in refined carbohydrates. Hydrocarbons are organic molecules consisting entirely of carbon and hydrogen, such as methane (CH4) described above. Majority of the monosaccharides found in the human body are of which type . Then it would be exactly like galactose. How many disaccharides of d-glucopyranose are possible? These functional groups can provide additional properties to the molecule and will alter its overall function. Direct link to sjg's post In the table, what is the, Posted 6 years ago. The brain is also highly sensitive to low blood-glucose levels because it uses only . A: Ketal is a functional group obtained from a ketone with alcohol where the carbonyl group is replaced. The equilibrium between the carbonyl forms of aldehydes or ketones and their associated acetal/hemiacetal (or ketal/hemiketal) forms also plays a critical role during the body's metabolism of xenobiotics (drugs). Cellulose is specific to plants, but polysaccharides also play an important structural role in non-plant species. Two monosaccharides link together to form a disaccharide. However, even with these types of substitutions, the basic overall structure of the carbohydrate is retained and easily identified. Carbohydrates are chains (or polymers) of basic sugar molecules such as glucose, fructose and galactose. In these animals, certain species of bacteria and protists reside in the rumen (part of the digestive system of herbivores) and secrete the enzyme cellulase. Common disaccharides include lactose, maltose, and sucrose. There are three classes of carbohydrates: monosaccharides, disaccharides, and polysaccharides. In order to see which functional groups are present in carbohydrates, we must look at the functional groups present in the more basic building blocks. Sucrose is formed when a monomer of glucose and a monomer of fructose are joined in a dehydration reaction to form a glycosidic bond. Lipids---carboxylic acid with long hydrocarbon chains (usually above 16 C long). Common disaccharides include maltose (grain sugar), lactose (milk sugar), and sucrose (table sugar). Q: Urea (HNCONH) is used extensively as a nitrogen source in fertilizers. The bee's exoskeleton (hard outer shell) contains chitin, which is made out of modified glucose units that have a nitrogenous functional group attached to them. They are subdivided into two classes aldoses and ketoses on the basis of whether they are aldehydes or ketones. if single bonds can rotate freely do the stereoisomers become each other interchangeably ? a group of atoms. Lipids have diverse structures, but the most common functional groups are ester (both carboxylate and phosphate) and alcohol groups. What are carbohydrates functional groups? please how comes the phosphate group has 5 bonds.whereas phosphorus is a group 5 element and it "needs" just 3 electrons to obey the octate rule? Functional groups include: hydroxyl, methyl, carbonyl, carboxyl, amino, phosphate, and sulfhydryl. { "1.01:_Biological_Foundations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.02:__Atoms_Ions_Molecules" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.03:_Intermolecular_Forces" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.04:_Carbon_and_Functional_Groups" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "1.05:_Water_Equilibrium_and_Buffers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { "00:_Front_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01:_Chemical_and_Biological_Foundations" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02:_Structure_and_Function-_Proteins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03:_Catalysis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04:_Structure_and_Function-_Nucleic_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05:_Structure_and_Function-_Carbohydrates_and_Lipids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06:_Energy_and_Metabolism" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07:_Regulation_of_Metabolism_and_Homeostasis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08:_Biotechnology_and_Other_Applications_of_Biochemistry" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09:_Basic_Techniques" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10:_Supplemental_Modules_(Biochemistry)" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "zz:_Back_Matter" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, [ "article:topic", "enantiomers", "structural isomers", "isomers", "functional group", "hydrocarbon", "aromatic hydrocarbon", "aliphatic hydrocarbon", "authorname:openstax", "showtoc:no", "license:ccby", "transcluded:yes", "geometric isomer", "organic molecule", "substituted hydrocarbon", "source[1]-bio-1786" ], https://chem.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fchem.libretexts.org%2FCourses%2FCalifornia_Polytechnic_State_University_San_Luis_Obispo%2FSurvey_of_Biochemistry_and_Biotechnology%2F01%253A_Chemical_and_Biological_Foundations%2F1.04%253A_Carbon_and_Functional_Groups, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), status page at https://status.libretexts.org, Describe the role of functional groups in biological molecules. The structure for one of the most common saccharides, glucose, is shown here. A monomer is the smallest unit of a polymer. Lipids with Hydrophobic Groups 2. Glycogen (not shown) is similar in structure to amylopectin but more highly branched. Longer polymers may not be readily soluble. start text, H, end text, start subscript, 2, end subscript, start text, O, end text, left parenthesis, start text, C, H, end text, start subscript, 2, end subscript, start text, O, end text, right parenthesis, start subscript, n, end subscript, start text, C, end text, equals, start text, O, end text, start text, C, end text, start subscript, 6, end subscript, start text, H, end text, start subscript, 12, end subscript, start text, O, end text, start subscript, 6, end subscript, start text, C, H, end text, start subscript, 2, end subscript, start text, O, H, end text, start superscript, 4, comma, 5, end superscript. Another type of hydrocarbon, aromatic hydrocarbons, consists of closed rings of carbon atoms. Group of molecules that give specific characteristics to an atom. They are not mirror images of each other (which is what an enantiomer is). Hydrocarbon chains are formed by successive bonds between carbon atoms and may be branched or unbranched. The simplest carbohydrates are the three-carbon dihydroxyacetone and trioses glyceraldehyde. These groups play an important role in the formation of molecules like DNA, proteins, carbohydrates, and lipids. No. 0 0 Figure 3. Figure 1. Maltose, or malt sugar, is a disaccharide made up of two glucose molecules. The fundamental component for all of these macromolecules is carbon. If you're seeing this message, it means we're having trouble loading external resources on our website. Plants are able to synthesize glucose. If the hydroxyl is up (on the same side as the CH. Glycogen is usually stored in liver and muscle cells. (Thats not to say that cellulose isnt found in our diets, it just passes through us as undigested, insoluble fiber.) The most common disaccharide is sucrose (table sugar), which is made of glucose and fructose. Direct link to sammiihh's post How can you identify a ca, Posted 4 years ago. This results in a filled outermost shell. 3. The atoms of functional groups are bound by covalent bonds with one another and with the rest of the molecule. If not, why not? Many cells prefer glucose as a source of energy versus other compounds like fatty acids. Direct link to zita18's post well determining by its a, Posted 7 years ago. If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked. f Qualitative Analysis of Functional Groups Materials Required: 1. Functional groups are groups of one or more atoms with distinctive chemical properties regardless of what is attached to them. An organic compound is a compound that, in general, contains carbon covalently bound to other atoms, especially Carbon-Carbon (C-C) and Carbon-Hydrogen (C-H). Direct link to Citrus's post A charged group is either, Posted 5 years ago. The methane molecule provides an example: it has the chemical formula CH4. A) Carbon is electropositive. Some of the key types of functional groups found in biological molecules. In this section, we will discuss and review basic concepts of carbohydrate structure and nomenclature, as well as a variety of functions they play in cells. Solve any question of Biomolecules with:- Patterns of problems > Was this answer helpful? Cellulose fibers and molecular structure of cellulose. If the hydroxyl group is below C1 in the sugar, it is said to be in the alpha () position, and if it is above C1 in the sugar, it is said to be in the beta () position. Carboxyl 3. Nucleic acid---one phosphate group, one nitrogen containing base (pyrimidine or purine) and a sugar molecule . Starch is the stored form of sugars in plants and is made up of a mixture of amylose and amylopectin; both are polymers of glucose. There are compounds where phosphorous forms three bonds (this is associated with an oxidation state of +3 or -3), but this element seems to prefer an oxidation state of +5. Figure 4. Furthermore, individual carbon-to-carbon bonds may be single, double, or triple covalent bonds, and each type of bond affects the geometry of the molecule in a specific way. How are the carbohydrates classified? Carbohydrates are one of the four main classes of macromolecules that make up all cells and are an essential part of our diet; grains, fruits, and vegetables are all natural sources. Figure 2. Two industrial black liquors and three precipitated lignins were fractionated, and their functional groups were determined, providing molar mass-dependent profiles. { "01.1:_Welcome_to_BIS2A" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01.2:_The_Scientific_Method" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "01.3:_Problem_Solving" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02.1:_The_Design_Challenge" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02.2:_Bacterial_and_Archaeal_Diversity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "02.3:_Eukaryotic_Cell:_Structure_and_Function" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03.1:_Electronegativity" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03.2:_Bond_TypesIonic_and_Covalent" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03.3:_Hydrogen_Bonds" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "03.4:_Functional_Groups" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04.1:_Carbohydrates" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04.2:_Lipids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04.3:_Amino_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "04.4:_Nucleic_Acids" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05.1:_Proteins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05.2:_Enzymes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "05.3:_pH" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.1:_pKa" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.2:_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.3:_Energy_Story" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.4:_Thermodynamics" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.5:_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.6:_Free_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.7:_Endergonic_and_Exergonic_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "06.8:_Activation_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07.1:_Energy_Story" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07.2:_Energy_and_Chemical_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07.3:_Chemical_EquilibriumPart_1:_Forward_and_Reverse_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "07.4:_Chemical_EquilibriumPart_2:_Free_Energy" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08.1:_ATP" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08.2:_Reduction_Oxidation_Reactions" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "08.3:_Electron_Carriers" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09.1:_Metabolism_in_BIS2A" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09.2:_Glycolysis:_Beginning_Principles_of_Energy_and_Carbon_Flow" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "09.3:_Fermentation_and_Regeneration_of_NAD" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10.1:_Oxidation_of_Pyruvate_and_the_TCA_Cycle" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "10.2:_Introduction_to_Electron_Transport_Chains_and_Respiration" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.1:_Electron_Transport_Chains" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.2:_Light_Energy_and_Pigments" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "11.3:_Photophosphorylation:_Anoxygenic_and_Oxygenic" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "12:_Light_Independent_Reactions_and_Carbon_Fixation" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "13.1:_Eukaryotic_Origins" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "14:_The_Cytoskeleton" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15.1:_Membranes" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15.2:_Membrane_Transport" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "15.3:_Membrane_Transport_with_Selective_Permeability" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "16.1:_The_DNA_Double_Helix_and_Its_Replication" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "17.1:_The_Flow_of_Genetic_Information" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "18.1:_Transcriptionfrom_DNA_to_RNA" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19.1:_TranslationProtein_Synthesis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "19.2:_The_Endomembrane_System" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "20.1:_Mutations_and_Mutants" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "21.1:_Sickle_Cell_Anemia" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "22.1:_Gene_regulation:_Introduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23.1:_Gene_regulation:_Bacterial" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "23.2:_Gene_regulation:_Eukaryotic" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24.1:_Cell_division:_Bacterial" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "24.2:_Cell_division:_Mitosis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25.1:_Cell_division:_Mitosis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "25.2:_Cell_division:_Meiosis" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", "26:_Genomes:_a_Brief_Introduction" : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, { Bis2A_SS2_Lecture_Agenda : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()", Readings : "property get [Map MindTouch.Deki.Logic.ExtensionProcessorQueryProvider+<>c__DisplayClass228_0.b__1]()" }, https://bio.libretexts.org/@app/auth/3/login?returnto=https%3A%2F%2Fbio.libretexts.org%2FCourses%2FUniversity_of_California_Davis%2FBIS_2A%253A_Introductory_Biology_(Easlon)%2FReadings%2F04.1%253A_Carbohydrates, \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}}}\) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\), Fructose versus both glucose and galactose, Linear versus ring form of the monosaccharides, status page at https://status.libretexts.org, Simple carbohydrates, such as glucose, lactose, or dextrose, end with an "-ose.".